The Operating Cycle of Control is a control cycle that divides any food and beverage operation into a series of coordinated procedures that are necessary to profitably and efficiently supply food and beverage products and services to guests.
The Restaurant Menu drives our cycle. Without a menu, no work can take place in the restaurant. The menu drives all of the steps taken place in the restaurant because it identifies what is to be sold. Buyers cannot buy, cooks cannot cook, managers cannot manage, and servers cannot serve unless there is a menu with appropriate food and beverage options.
Let’s review the Operating Cycle of Control and focus on one area today...
Pre-Purchase Functions
- Standardized Recipes
- Cost Cards
- Specifications
- Par Stock
- Requisition
- Shopping Lists
- Purchase Orders

OPERATING CYCLE OF CONTROL

Front of House Functions
- Guests
- Guest Check

Back of House Functions
- Receiving Activities
- Invoice Management
- Storage Practices and Inventory Management
- Product Issuing
- Kitchen Production
Why the need for standardized recipes?

Imagine you are a chef and you are serving a dinner for 500 guests. What are you going to use to make sure everyone receives the same amount of food?
If the menu is the force that drives the operating cycle of control, then standardized recipes give the energy to this cycle. Every item on the menu requires a standardized recipe.
Four reasons why we use Standardized Recipes

1. They control how the product is made
2. They describe how the item is to be presented on the plate
3. They provide for total consistency each and every time the item is sold
4. They guarantee consistency in cost
Learning Objectives

1. Explain the purpose of standardized recipes and plate cards in a foodservice operation.
2. Identify the elements of standardized recipes.
3. Develop standardized recipes and plate cards for menu items.
4. Correctly express a recipe yield.
5. Recognize the role of the recipe yield in controlling portion sizes and portion costs.
6. Recognize the difference between weights and measures in relation to recipes, portion costs, and purchasing.
7. Calculate multipliers to size recipes for a range of sales levels.
Definition: Standardized Recipe

A recipe that has been tested, adjusted, and retested again and again until it produces a menu item as management wants the item produced.
How to Standardize a Recipe

1. Work on one recipe at a time.
2. Produce the item exactly as the recipe is written, without changing or adjusting anything.
3. Analyze the outcome for the following: Overall taste, appearance, method of prep, portion size, cost per portion for the item as prepared and menu fit.
4. Adjust the recipe according to the evaluation. Rewrite the recipe.
5. Produce the item again and analyze according to the same criteria.
6. Analyze the item again, recording all changes and modifications.
7. Produce the item again.
8. Analyze and record again. Repeat this process until satisfied with the results.
The Essentials of a Standardized Recipe

A recipe must be:

• Consistent
• Easy to use
• Easy to follow
• Comprehensive
• Readily available
• Correct
The Essentials of a Standardized Recipe

What happens when recipes are not standardized?
The Essentials of a Standardized Recipe

Non Standardized Recipes

• Cause confusion
• Bury important details
• Do not list equipment and tools needed
• Do not specify portion sizes
• Use unfamiliar terminology
• Poorly written method of prep
• Wastes employee’s and manager’s time
The Essentials of a Standardized Recipe

And what is the impact of not using standardized recipes?
The Essentials of a Standardized Recipe

Impact of Non Standardized Recipes

- Increased labor cost and food cost
- Inconsistent product
- Inaccurate recipe yields
- Inaccurate portion costs
- Server confusion
- Guest dissatisfaction
- Potential health code violations and fines
Elements of a Standardized Recipe

- Name and file code
- Recipe yield
- Equipment
- Prep time
- Cook time
- Hot/cold temperatures and times
- Food safety statement
- Ingredients and garnish

- Quantities of ingredients
- Method of prep
- Plating and garnish
- Cutting instructions
- Cooling/storing leftovers
- Nutritional analysis
- Fat/calorie reductions
- Photo of the item
Elements of a Standardized Recipe

If you were to design a standardized recipe today, what important details would you include?
What does a Standardized Recipe look like?

Below is an example of a standardized recipe:

<table>
<thead>
<tr>
<th>Recipe for Chicken Noodle Soup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield: 25 Portions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Weight</th>
<th>Measure</th>
<th>Ounces per unit</th>
<th>Total Recipe Ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken Stock</td>
<td>12 lb.</td>
<td>1 ½ gal.</td>
<td>X 128 (oz. per gal.)</td>
<td>192 oz.</td>
</tr>
<tr>
<td>Chicken breast</td>
<td>1 ½ lb.</td>
<td>4 c.</td>
<td>X 8 (oz. per c.)</td>
<td>32 oz.</td>
</tr>
<tr>
<td>meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noodles, egg, narrow</td>
<td>1 ¼ lb.</td>
<td>5 c.</td>
<td>X 8 (oz. per c.)</td>
<td>40 oz.</td>
</tr>
<tr>
<td>Onions, ¼ dice</td>
<td>½ lb.</td>
<td>6 oz.</td>
<td></td>
<td>6 oz.</td>
</tr>
<tr>
<td>Bay leave</td>
<td></td>
<td>To taste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pepper</td>
<td></td>
<td>To taste</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Recipe Ounces 270
On the right is our sample recipe.

As the manager of the restaurant, your chef has asked you this question, “There are 25 portions in this recipe, but how big is the portion size?”

You will need to run some calculations to find the answer.

We will use a simple calculation to solve for the answer.

To find the portion size of the soup:

\[
\text{portion size} = \frac{\text{total recipe ounces}}{\text{yield}}
\]

\[
(250 \text{ oz.}) / (25 \text{ oz.}) = 10 \text{ oz.}
\]
Take a copy of this handout.

This is an example of an industry standard. Hazard Analysis Critical Control Point recipe. These recipes are used throughout the industry to ensure the highest level of control and professionalism in the restaurant.

With a partner, read the recipe and identify some of the most important features of the design of this recipe.

Using the second sheet, record your own notes of what you find positive, negative, and interesting about this style of standardized recipe.
Writing Recipe Instructions

• Use terminology staff understands.
• Consider language. Translate recipes if necessary.
• Use precise descriptions.
• Numerically step out procedures.
• Write clearly and concisely.
• Follow the steps yourself.
• Use photos for procedures and final product.
• Include corrective actions for procedures.
Do’s and Don’ts when Writing

<table>
<thead>
<tr>
<th>Wording for procedural steps that may lead to misinterpretation</th>
<th>Rephrased Wording for Procedural Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stir until well blended</td>
<td>Stir until uniform consistency, with no streaks</td>
</tr>
<tr>
<td>Lightly brown</td>
<td>Cook until light brown in colour, about 3 – 5 minutes</td>
</tr>
<tr>
<td>Steam, bake boil until done</td>
<td>Steam, bake, boil for ___ minutes.</td>
</tr>
<tr>
<td>Reduce slightly</td>
<td>Sauce should be cooked to a consistency that will fully coat the back of a spoon</td>
</tr>
<tr>
<td>Pierce the skin</td>
<td>Using a paring knife, make ¼ inch cutes in the surface of the product</td>
</tr>
<tr>
<td>Toss lightly</td>
<td>Toss ingredients together until the product is well coated with dressing or sauce mixture</td>
</tr>
</tbody>
</table>
Weights Vs. Volume Measures

• **Weight** is a measure of density or heaviness. A scale is the tool to use.

• **Volume** is a measure of space. Measuring cups, spoons, and other volume measures are the tools to use.
Standard Weights and Measures

Weight

- 1 pound (lb.) = 16 ounces
- 125g = 4oz = (1/4 lb)
- 250g = 8oz = (1/2 lb)
- 375g = 12oz (3/4 lb)
- 500g = 16oz = (1 lb)
- 750g = 24oz = (1 ½ lb)
- 1kg = 32oz = (2 lb)
- 1.5kg = 48oz = (3 lb)
- 2kg = 64oz = (4 lb)

Volume Measures

- 1 gallon = 128 ounces
- ½ gallon = 64 ounces
- 1 quart = 32 ounces = (1/4 gal.)
- 1 pint = 16 ounces
- 1 cup = 8 ounces
- 16 cups = 1 gallon
- 3 tsp. = 1 Tbsp.
- 2 Tbsp. = 1 fluid oz.
- 16 Tbsp. = 1 cup
Plate Cards

What to include:
1. Each item on the plate
2. Portion size of each item on the plate
3. Placement and positioning of each item
4. Garnish
5. Serviceware
6. Photo
7. Cooking and preparation as appropriate
8. Any other detail needed
Sizing Recipes

- Convert recipes to a different number of servings when the portion size remains the same.

How?

1. Determine the recipe multiplier.
2. Convert ingredients into ounces.
3. Multiply ingredient quantity by the multiplier.
4. Convert to a common unit of measure.
Chicken Noodle Soup
Original Yield = 25 Servings
New Yield: 15 Servings

Formula:
New Recipe Yield / Original Recipe Yield = Recipe Multiplier

\[
15 / 25 = .6
\]
Example

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Recipe Amount</th>
<th>Multiplier</th>
<th>Raw</th>
<th>New Conversion Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken Stock</td>
<td>192 oz.</td>
<td>.6</td>
<td>116 oz.</td>
<td>3 qts. + 3 cups</td>
</tr>
<tr>
<td>Chicken Breast</td>
<td>24 oz.</td>
<td>.6</td>
<td>15 oz.</td>
<td>15 oz.</td>
</tr>
<tr>
<td>Egg noodles</td>
<td>20 oz.</td>
<td>.6</td>
<td>12 oz.</td>
<td>12 oz.</td>
</tr>
<tr>
<td>Onions</td>
<td>8 oz.</td>
<td>.6</td>
<td>5 oz.</td>
<td>5 oz.</td>
</tr>
<tr>
<td>Bay leaf</td>
<td>2 each</td>
<td>.6</td>
<td>1 each</td>
<td>1 each</td>
</tr>
</tbody>
</table>
Calculating a Multiplier at a New Serving Size 250 – 6-oz. Servings

- Determine total ounces in **original recipe**
 25 servings x 10 oz. = 250 oz.
- Divide total ounces by desired portion size.
 260 oz. / 6 oz. (new portion size) = 41-6 oz. servings
- Find the new recipe multiplier. Divide the new quantity to produce by the number of servings in Step 2.
 250 – 6 oz. servings / 41 = 6.09 (multiplier)
Knowledge Check

Instructions:
Write your answers to the questions below. When you have finished, please check your answers with a partner.

1. Why a recipe?
2. Why a standardized recipe?
3. What does a standardized recipe look like?
4. What is the difference between weights and measures?